Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Front Chem Sci Eng ; : 1-11, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-20242761

ABSTRACT

The current SARS-CoV-2 pandemic has resulted in the widespread use of personal protective equipment, particularly face masks. However, the use of commercial disposable face masks puts great pressure on the environment. In this study, nano-copper ions assembled cotton fabric used in face masks to impart antibacterial activity has been discussed. To produce the nanocomposite, the cotton fabric was modified by sodium chloroacetate after its mercerization, and assembled with bactericidal nano-copper ions (about 10.61 mg·g-1) through electrostatic adsorption. It demonstrated excellent antibacterial activity against Staphylococcus aureus and Escherichia coli because the gaps between fibers in the cotton fabric allow the nano-copper ions to be fully released. Moreover, the antibacterial efficiency was maintained even after 50 washing cycles. Furthermore, the face mask constructed with this novel nanocomposite upper layer exhibited a high particle filtration efficiency (96.08% ± 0.91%) without compromising the air permeability (28.9 min·L-1). This green, economical, facile, and scalable process of depositing nano-copper ions onto modified cotton fibric has great potential to reduce disease transmission, resource consumption, and environmental impact of waste, while also expanding the range of protective fabrics.

2.
Journal of Polymer Research ; 30(6), 2023.
Article in English | ProQuest Central | ID: covidwho-2323573

ABSTRACT

Extracorporeal membrane oxygenator (ECMO) is a valuable technology to support people with acute respiratory distress syndrome (ARDS) and is recommended for COVID-19 patients. This study aims to fabricate polymer-based composite membranes coated with ethylcellulose nanoparticles from waste paper and identify the performance of the composite as ECMO candidates. Composite membranes were made from four types of polymers, namely, nylon, PTFE (polytetrafluoroethylene), Pebax® MH-1657, and SBS (poly-(styrene-b-butadiene-b-styrene)). PDMS (polydimethylsiloxane) 1 wt.% and ethylcellulose nanoparticles (3% and 10 wt.%) were used as membrane coatings to increase their hydrophobic properties. The success of cellulose isolation and ethylcellulose synthesis from waste paper was confirmed by the FTIR and XRD analysis. The size of the synthesized ethylcellulose nanoparticles was 32.68 nm. The coating effect on composite membranes was studied by measuring the contact angle, membrane porosity, protein quantification tests, and single gas permeation of O2 and CO2. Based on the protein quantification test, the protein could not pass through the Pebax/PDMS and SBS/PDMS composites coated with 10 wt.% ethylcellulose;this indicated less risk of plasma leakage. The gas permeation test on nylon/PDMS, PTFE/PDMS, and SBS/PDMS composites coated with 10% ethylcellulose resulted high CO2/O2 selectivity, respectively, 2.17, 3.48, and 3.22 as good indication for extracorporeal oxygenation membrane.

3.
Microb Cell Fact ; 22(1): 103, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2321686

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS: We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS: In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.


Subject(s)
Cellulase , Single-Domain Antibodies , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Glucose/metabolism , Single-Domain Antibodies/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cellulose/metabolism , Trichoderma/metabolism
4.
Zhongguo Bingdubing Zazhi = Chinese Journal of Viral Diseases ; 13(2):115, 2023.
Article in English | ProQuest Central | ID: covidwho-2320640

ABSTRACT

Objective To develop a novel gold immunochromatographic double antibody sandwich assay for the detection of SARS-CoV-2 antigen, and to evaluate the performance of major reagents. Methods Potassium carbonate, large colloidal gold and SARS-CoV-2 antibody were used to prepare colloidal gold antibody markers, SARS-CoV-2 antibody concentration was optimized to prepare the binding pad, SARS-CoV-2 antibody and goat anti-mouse IgG were coated on nitrocellulose membrane as detection line and quality control line, according to the process requirements to assembly the assay. The minimum detection limit, cross-reactivity, accelerated stability test and clinical evaluation of the antigen detection reagent were determined. Results The minimum detection limit of SARS-CoV-2 inactivated virus was 3. 3×10~2 TCID50/ml, and no cross-reaction was found in the samples containing 10 common pathogens. The results of 37 °C high temperature accelerated test for 28 d showed high stability of the reagent. The sensitivity, specificity and total coincidence rate were 92. 00%, 100. 00% and 98. 67% and the Kappa value of concordance test was 0. 939, P<0. 01. Conclusion The developed antigen detection assay has high sensitivity and specificity, which is also simple to operate in a short time. It can be used as a rapid detection method for large-scale screening of novel coronavirus.

5.
New Journal of Chemistry ; 47(1):17-40, 2022.
Article in English | EMBASE | ID: covidwho-2316894

ABSTRACT

Viruses and other microorganisms can enter water sources from different routes and cause pollution and irreparable damage. So, cost-effective and efficient systems for providing safe water are necessary. Efficient filtration systems based on antimicrobial materials have received a lot of attention in this regard. A wide range of materials play an important role in the production of efficient water filtration systems. Metal and metal oxide particles with anti-viral and antimicrobial properties comprising Cu, Cu2O, Ag, TiO2, and ZnO play a valuable role in the preparation of water filtration systems. Biopolymers such as cellulose or carbon nanomaterials like graphene or its derivatives have been reported to provide safe water. In this review, we summarize the use of diverse materials in the preparation of efficient filtration-based systems like membranes and paper filters for water treatment. Pathogen-containing water samples were effectively disinfected using the prepared water disinfection systems.Copyright © 2023 The Royal Society of Chemistry.

6.
Journal of Paediatrics and Child Health ; 59(Supplement 1):76, 2023.
Article in English | EMBASE | ID: covidwho-2314518

ABSTRACT

Background: COVID-19 is caused by SARS-CoV-2 and has is responsible for over 619 million infections and over 6.5 million deaths globally since identification in 2019. Infection during pregnancy is associated with increased adversity including increased risks of admission to intensive care, increased ventilatory support, preeclampsia, preterm birth and maternal death. Vaccination remains the best protection against severe disease. The majority of trials for novel or repurposed COVID-19 therapies including mRNA vaccinations have excluded pregnant or lactating women despite being an at-risk population. Broccoli sprout extract contains a naturally occurring phytonutrient sulforaphane which upregulates the Nrf2 transcription factor resulting in expression of antioxidant proteins, anti-inflammatory effects and has demonstrated anti-viral effects in-vitro . Severe COVID-19 results in excessive cytokine production resulting in a proinflammatory state with significant oxidative stress and multi-organ dysfunction with evidence of placental abnormalities in almost half of infected mothers. Method(s): CO-Sprout is a pilot, double blinded, placebo controlled randomised trial that is recruiting pregnant women ( n = 60) between 20 and 36 weeks completed gestation with COVID-19 diagnosed within 5 days. Participants are randomised to either broccoli sprout capsules (containing 21 mg sulforaphane) or identical placebo (microcrystalline cellulose) twice daily for 14 days. The primary outcome will be duration (days) of COVID-19 related symptoms and other exploratory outcomes including unplanned hospital admissions, birth outcomes, inflammatory markers, microbiome and placental changes. Patients are recruited through maternity departments at Monash Health and Jessie McPherson Private Hospital. Result(s): Trial in progress. Conclusion(s): Trial results to be published after trial completion.

7.
Ethiopian Journal of Health Development ; 36(2), 2022.
Article in English | Web of Science | ID: covidwho-2310919

ABSTRACT

Background: Environmental concerns are increasing in and around us due to improper discharge of personal protective gear or equipment (PPEs) during the current pandemic with SARS-CoV-2. The residents of Salalah, under the Dhofar governorate of Oman, were hastening to take every possible measure to safeguard their health against the COVID-19 pandemic. In this scenario, improper discard of facemasks in the environment entails a significant problem for public health and aquatic environments. Objective: This study aims to assess how the SARS-CoV-2 virus disrupted the household waste management chain in the Sultanate of Oman. In addition, descriptive survey has also identified people's perception about the existing household waste management system. Methods: Total 200 respondents were personally selected under the purposive sampling category. Data were analyzed using SPSS version 26. The mean, standard deviation, and distribution shape were calculated based on the retrieved data. The variables and frequencies were tabulated for categorical variables. Results show negative impacts on the environment, wildlife, and public health. It was also observed that there was a significant difference when grouped according to residence location since the obtainedalso observed a significant difference when grouped according to residence location since the p-value of 0.007 was less than 0.05 alpha level. This means that the responses differ significantly. It shows from the test conducted that participants from the village experienced and observed a negative impact on the discarded face masks compared to those in the city. Conclusion and recommendation: This study illustrates the real impact of the COVID-19 face masks on the environment, wildlife, and public health. In addition, the new management of the user's face masks for eliminating or reducing the risks to human health and the environment has been suggested.

8.
Photodiagnosis and Photodynamic Therapy ; Conference: ABSTRACTS of the Nancy Meeting 2022. Nancy France. 41 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2294587

ABSTRACT

Novel safe and stable teracationic Zinc phthalocyanine is efficient against bacteria, fungi and viruses also under indoor light Recently a novel photosensitizer with outstanding properties, phthalocyanine LASU has being developed. The compound possesses unprecedented stability and antimicrobial activity. It can be activated by a weak indoor light of 270 lux and shows the activity against G+ and G- bacteria as well as fungi and viruses. Over 3 log inactivation of bacteria and fungi on the surface of a LASU-impregnated material can be achieved in 1/2-1 h of illumination with a regular indoor and/or natural light. A cotton filter impregnated with 0.1 g/m2 of LASU eradicates on its surface the coronavirus HCoV-229E by 3.5 log in 30 minutes under indoor/natural light of 500 lux. The molecule is photostable and remains active for weeks with no significant bleaching. Another remarkable property is its ability to bind to cellulose support. It readily attaches to a fiber substrate through electrostatic interactions, moreover, the size of LASU ring matches the pitch of cellulose polymer, making the conjugate unusually strong. Hence the compound does not leech to water and is stable against temperature and surfactants. The toxicology studies also reveals that substance is non-irritating for human skin, and is non-mutagenic, which makes it suitable for human-wearable items.Copyright © 2023

9.
Bulletin of the Chemical Society of Ethiopia ; 37(2):265-276, 2023.
Article in English | Scopus | ID: covidwho-2272610

ABSTRACT

The recent research focused on the green synthesis of silicon dioxide nanoparticles, SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites, and L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites using cellulose of Zizyphus Spina-Christi as a new green polymeric surfactant. The structures of nanoparticles and nanocomposites were characterized by different spectroscopy and microscopy techniques. Nanoparticles and nanocomposites were utilized to determine the concentration of chromium, cadmium, and lead in COVID-19 patients using double-vortex-ultrasonic assisted surfactant enhanced dispersive liquid-liquid microextraction. Mean recoveries of chromium, cadmium, and lead were obtained in the range of 86-98% with relative standard deviations below 4%. The advantages of the proposed method are green and novel polymer surfactant with low detection limit. Finally, antibacterial activities were investigated. The maximum inhibition zone of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites was obtained for Staphylococcus Aureus (21.9±0.4 mm). L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites have low cytotoxicity against MCF-7 cancer cells. These results indicated the potential ability of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites in the determination of metal concentrations in biological samples along with good antibacterial properties and cytotoxic properties. © 2023 Chemical Society of Ethiopia and The Authors.

10.
Bulletin of the Chemical Society of Ethiopia ; 37(2):265-276, 2022.
Article in English | CAB Abstracts | ID: covidwho-2272609

ABSTRACT

The recent research focused on the green synthesis of silicon dioxide nanoparticles, SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites, and L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites using cellulose of Zizyphus Spina-Christi as a new green polymeric surfactant. The structures of nanoparticles and nanocomposites were characterized by different spectroscopy and microscopy techniques. Nanoparticles and nanocomposites were utilized to determine the concentration of chromium, cadmium, and lead in COVID-19 patients using double-vortex-ultrasonic assisted surfactant enhanced dispersive liquid-liquid microextraction. Mean recoveries of chromium, cadmium, and lead were obtained in the range of 86-98% with relative standard deviations below 4%. The advantages of the proposed method are green and novel polymer surfactant with low detection limit. Finally, antibacterial activities were investigated. The maximum inhibition zone of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites was obtained for StaphylococcusAureus (21.9..0.4 mm). L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites have low cytotoxicity against MCF-7 cancer cells. These results indicated the potential ability of L-Arginine@SiO2@Cellulose of Zizyphus Spina-Christi nanocomposites in the determination of metal concentrations in biological samples along with good antibacterial properties and cytotoxic properties.

11.
Chem Eng J ; 464: 142588, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2267893

ABSTRACT

The worldwide spread of COVID-19 has put a higher requirement for personal medical protective clothing, developing protective clothing with sustained antibacterial and antiviral performance is the priority for safe and sustaining application. For this purpose, we develop a novel cellulose based material with sustained antibacterial and antiviral properties. In the proposed method, the chitosan oligosaccharide (COS) was subjected to a guanylation reaction with dicyandiamide in the presence of Scandium (III) triflate; because of the relatively lower molecular weight and water solubility of the COS, GCOS (guanylated chitosan oligosaccharide) with high substitution degree (DS) could be successfully synthetized without acid application. In this instance, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the GCOS were only 1/8 and 1/4 of that of COS. The introduction of GCOS onto the fiber endowed the fiber with extremely high antibacterial and antiviral performance, showing 100% bacteriostatic rate against Staphylococcus aureus and Escherichia coli and 99.48% virus load reduction of bacteriophage MS2. More importantly, the GCOS modified cellulosic fibers (GCOS-CFs) exhibit excellent sustained antibacterial and antiviral properties; namely, 30 washing cycles had negligible effect on the bacteriostatic rate (100%) and inhibition rate of bacteriophage MS2 (99.0%). Moreover, the paper prepared from the GCOS-CFs still exhibited prominent antibacterial and antiviral activity; inferring that the sheeting forming, press, and drying process have almost no effect on the antibacterial and antiviral performances. The insensitive of antibacterial and antiviral activity to water washing (spunlace) and heat (drying) make the GCOS-CFs a potential material applicable in the spunlaced non-woven fabric production.

12.
ACS Appl Mater Interfaces ; 15(17): 20638-20648, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2277202

ABSTRACT

In the present work, we developed an effective antimicrobial surface film based on sustainable microfibrillated cellulose. The resulting porous cellulose thin film is barely noticeable to human eyes due to its submicrometer thickness, of which the surface coverage, porosity, and microstructure can be modulated by the formulations and the coating process. Using goniometers and a quartz crystal microbalance, we observed a threefold reduction in water contact angles and accelerated water evaporation kinetics on the cellulose film (more than 50% faster than that on a flat glass surface). The porous cellulose film exhibits a rapid inactivation effect against SARS-CoV-2 in 5 min, following deposition of virus-loaded droplets, and an exceptional ability to reduce contact transfer of liquid, e.g., respiratory droplets, to surfaces such as an artificial skin by 90% less than that from a planar glass substrate. It also shows excellent antimicrobial performance in inhibiting the growth of both Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis) due to the intrinsic porosity and hydrophilicity. Additionally, the cellulose film shows nearly 100% resistance to scraping in dry conditions due to its strong affinity to the supporting substrate but with good removability once wetted with water, suggesting its practical suitability for daily use. Importantly, the coating can be formed on solid substrates readily by spraying, which requires solely a simple formulation of a plant-based cellulose material with no chemical additives, rendering it a scalable, affordable, and green solution as antimicrobial surface coating. Implementing such cellulose films could thus play a significant role in controlling future pan- and epidemics, particularly during the initial phase when suitable medical intervention needs to be developed and deployed.


Subject(s)
Anti-Infective Agents , COVID-19 , Humans , Cellulose/chemistry , Porosity , Surface Properties , SARS-CoV-2 , Anti-Infective Agents/pharmacology , Water/chemistry
13.
Int J Biol Macromol ; 236: 123951, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2276638

ABSTRACT

Masks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity. Second, the effect of the coatings was evaluated by analysing the morphology, surface chemistry, charge of the modified PP layer, air permeability, water-vapour retention, add-on, contact angle, antiviral activity against the model virus phi6 and cytotoxicity. Finally, the functional PP layers were integrated into face masks, and resulting masks were tested for wettability, air permeability, and viral filtration efficiency (VFE). Air permeability was reduced for modified PP layers (43 % reduction for kat-CNF) and face masks (52 % reduction of kat-CNF layer). The antiviral potential of the modified PP layers against phi6 showed inhibition of 0.08 to 0.97 log (pH 7.5) and cytotoxicity assay showed cell viability above 70 %. VFE of the masks remained the same (~99.9 %), even after applying the biopolymers, confirming that these masks provided high level of protection against viruses.


Subject(s)
COVID-19 , Chitosan , Humans , COVID-19/prevention & control , Antiviral Agents/pharmacology , Pandemics/prevention & control , Cellulose/pharmacology , Masks
14.
Blood Purif ; : 1-8, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2257443

ABSTRACT

INTRODUCTION: High-flux hemodialysis membranes may modulate the cytokine storm of SARS-CoV-2, but their impact on chronic hemodialysis (CHD) patients is unknown. The aim of the study was the evaluation of asymmetric cellulose triacetate (ATA) and polymethylmethacrylate (PMMA) dialyzers on inflammatory markers and clinical outcomes in CHD patients with SARS-CoV-2. METHODS: A prospective, observational study on CHD patients with SARS-CoV-2 was carried out. Patients were enrolled from March 2020 to May 2021. Pre- and postdialysis C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) were determined at each session. Patients who underwent on-line hemodiafiltration (OLHDF) with a PMMA dialyzer were compared with those treated with OLHDF with a ATA dialyzer. The primary endpoint was the differences in the reduction ratio per session (RR) of CRP, PCT, IL-6, and IL-6 RR >25%. RESULTS: We consecutively enrolled 74 CHD patients with COVID-19, 48 were treated with ATA membrane, and 26 with PMMA. Median IL-6 RR was higher in the ATA group compared to PMMA (17.08%, IQR -9.0 to 40.0 vs. 2.95%, IQR -34.63 to 27.32). Median CRP RR was 7.77% (IQR 2.47-13.77) in the ATA group versus 4.8% (IQR -2.65 to 11.38) in the PMMA group (p = 0.0017). Median PCT-RR% was 77.38% (IQR 70.92-82.97) in ATA group versus 54.59% (IQR 42.62-63.16) in the PMMA group (p < 0.0001). A multiple logistic regression analysis with IL-6 RR >25% as the outcome including the membrane employed, pre-dialysis IL-6, CRP, PCT, and ferritin showed that ATA led to a higher probability to reach the outcome (OR 1.891, 95% CI 1.273-2.840, p = 0.0018) while higher CRP favors the risk of lower IL-6 RR values (OR 0.910, 95% CI 0.868-0.949, p ≤ 0.0001). CONCLUSIONS: In SARS-CoV-2 CHD patients treated with OLHDF, ATA showed a better anti-inflammatory profile, regarding IL-6 RR, compared to PMMA.

15.
Journal of Hazardous Materials ; 443, 2023.
Article in English | Scopus | ID: covidwho-2242953

ABSTRACT

This study focuses on characterizing microplastics and non-microplastics released from surgical masks (SMs), N95 masks (N95), KN95 masks (KN95), and children's masks (CMs) after simulating sunlight aging. Based on micro-Raman spectrum analysis, it was found that the dominant particles released from masks were non-microplastics (66.76–98.85%). Unfortunately, CMs released the most microplastics, which is 8.92 times more than SMs. The predominant size range of microplastics was 30–500 µm, and the main polymer types were PP and PET. Compared with the whole SMs, the microplastic particles released from the cutting-SMs increased conspicuously, which is 12.15 times that of the whole SMs. The main components of non-microplastics include β-carotene, microcrystalline cellulose 102, and eight types of minerals. Furthermore, non-microplastics were mainly fibrous and fragmented in appearance, similar to the morphology of microplastics. After 15 days of UVA-aging, the fibers of the face layers had cracks to varying degrees. It was estimated that these four types of masks can release at least 31.5 trillion microplastics annually in China. Overall, this study demonstrated that the masks could release a large quantity of microplastics and non-microplastics to the environment after sunlight aging, deserving urgent attention in the future study. © 2022 Elsevier B.V.

16.
Sci Total Environ ; 859(Pt 2): 160341, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2242745

ABSTRACT

Viruses are the most abundant microorganisms on the earth, their existence in contaminated waters possesses a significant threat to humans. Waterborne viral infections could be fatal to sensitive population including young child, the elderly, and the immune-compromised. It is imperative to remove viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses genetic fragments in raw sewage. We reported bench-scale experiments evaluating the extent and mechanisms of removal of a model virus (spring viremia of carp virus, SVCV) in water by adsorption. Microspheres made by boronic acid-modified bacterial cellulose with excellent mechanical strength were successfully fabricated as packing materials for the column to remove glycoproteins and enveloped viruses from water. The synthesized adsorbent was characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Brunauer Emmett Teller (BET) measurement. The adsorption efficiency of glycoproteins was investigated by SDS-PAGE and the Broadford protein assay, while the binding capacity with the virus (spring viremia of carp virus) was monitored by cell culture to calculate the viral cytopathic effect and viral titer caused by the virus. The data obtained from the above experiments showed that ∼3-log removal of SVCV in 3 h, which significantly reduced the virus concentration from microspheres packed column. The present study provides substantial evidence to prove beyond doubt that material based on bacterial cellulose seems to have the potential for virus removal from water which can be extended to systems of significant importance.

17.
Smartmat ; 4(2), 2023.
Article in English | ProQuest Central | ID: covidwho-2229508

ABSTRACT

Stretchable, self‐healing, and breathable skin‐biomimetic‐sensing iontronics play an important role in human physiological signal monitoring and human–computer interaction. However, previous studies have focused on the mimicking of skin tactile sensing (pressure, strain, and temperature), and the development of more functionalities is necessary. To this end, a superior humidity‐sensitive ionic skin is developed based on a self‐healing, stretchable, breathable, and biocompatible polyvinyl alcohol–cellulose nanofibers organohydrogel film, showing a pronounced thickness‐dependent humidity‐sensing performance. The as‐prepared 62.47‐μm‐thick organohydrogel film exhibits a high response (25,000%) to 98% RH, excellent repeatability, and long‐term stability (120 days). Moreover, this ionic skin has excellent resistance to large mechanical deformation and damage, and the worn‐out material can still retain its humidity‐sensing capabilities after self‐repair. Humidity‐sensing mechanism studies show that the induced response is mainly related to the increase of proton mobility and interfacial charge transport efficiency after water adsorption. The superior humidity responsiveness is attributed to the reduced thickness and the increased specific surface area of the organohydrogel film, allowing real‐time recording of physiological signals. Notably, by combining with a self‐designed printed circuit board, a continuous and wireless respiration monitoring system is developed, presenting its great potential in wearable and biomedical electronics.

18.
J Memb Sci ; 672: 121473, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2232719

ABSTRACT

The COVID-19 pandemic has caused serious social and public health problems. In the field of personal protection, the facial masks can prevent infectious respiratory diseases, safeguard human health, and promote public safety. Herein, we focused on preparing a core filter layer for masks using electrospun polyvinyl butyral/apocynum venetum extract nanofibrous membranes (PVB/AVE NMs), with durable interception efficiency and antibacterial properties. In the spinning solution, AVE acted as a salt to improve electrical conductivity, and achieve long-lasting interception efficiency with adjustable pore size. It also played the role of an antibacterial agent in PVB/AVE NMs to achieve win-win effects. The hydrophobicity of PVB-AVE-6% was 120.9° whereas its filterability reached 98.3% when the pressure drop resistance was 142 Pa. PVB-AVE-6% exhibited intriguing properties with great antibacterial rates of 99.38% and 98.96% against S. aureus and E. coli, respectively. After a prolonged usability test of 8 h, the filtration efficiency of the PVB/AVE masks remained stable at over 97.7%. Furthermore, the antibacterial rates of the PVB/AVE masks on S. aureus and E. coli were 96.87% and 96.20% respectively, after using for 2 d. These results indicate that PVB/AVE NMs improve the protective performance of ordinary disposable masks, which has certain application in air filtration.

19.
Int J Biol Macromol ; 231: 123587, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2232256

ABSTRACT

The worldwide outbreak of SARS-CoV-2 has attracted extensive attention to antibacterial and antivirus materials. Cellulose is the most potential candidate for the preparation of green, environmentally friendly antibacterial and antiviral materials. Herein, modified cellulosic fibers with sustained antibacterial and antiviral performance was prepared by introducing chitosan oligosaccharide onto the fibers. The two-step method is proved to be more effective than the one-step method for enhanced chitosan oligosaccharide loadings and antibacterial and antiviral activity. In this instance, the modified fibers with 61.77 mg/g chitosan oligosaccharide loadings can inhibit Staphylococcus aureus and Escherichia coli by 100 % after contacting with bacteria for 12 h and reduce the bacteriophage MS2 by 99.19 % after 1 h of contact. More importantly, the modified fibers have washing durable antibacterial and antiviral activity; the modified fibers have 100 % antibacterial and 98.38 % antiviral activity after 20 washing cycles. Benefiting from the excellent performance of the individual fibers, the paper prepared from the modified fibers show great antibacterial (100 %) and antiviral performance (99.01 %) and comparable mechanical strength. The modified fibers have potential applications in the manufacture of protective clothing and protective hygiene products.


Subject(s)
COVID-19 , Chitosan , Humans , Chitosan/pharmacology , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Escherichia coli , Oligosaccharides
20.
Cellulose (Lond) ; 29(7): 3871-3887, 2022.
Article in English | MEDLINE | ID: covidwho-1838360

ABSTRACT

Currently, researchers are focusing on the development of nano-additive preservatives during the worldwide COVID-19 pandemic. This research aimed to constitute a small sized preservative nano-formulation which emerges from the biopolymer carboxymethyl cellulose (a green stabilizing agent) and hydromagnesite stromatolite (a fossilized natural additive). In this study, we investigated the optimization of the experimental design of carboxymethyl cellulose/hydromagnesite stromatolite (CMC/HS) bio-nanocomposites using a green and one-step sonochemical method at room temperature. In addition, we constructed a mathematical model which relates the intrinsic viscosity with all operating variables, and we carried out statistical error analysis to assess the validity of the proposed model. The characterization and chemical functional groups of CMC/HS bio-nanocomposites were determined by different advanced techniques such as SEM, HRTEM, DLS, FTIR, XRD, and BET. The challenge test was used to show the preservative efficacy of CMC/HS bio-nanocomposites against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT) assay was performed on L929 cells to evaluate the in vitro cytotoxicity of CMC/HS bio-nanocomposites. According to the results, we showed that the synthesized CMC/HS bio-nanocomposites have no cytototoxic effects on L929 fibroblast cells and could be considered to be an alternative green nano-additive preservative against pathogenic microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL